

UC SANTA BARBARA

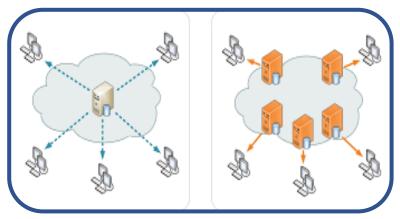
Robust Utility Design in Distributed Resource Allocation Problems with Defective Agents

Bryce L. Ferguson & Jason R. Marden

University of California, Santa Barbara Department of Electrical and Computer Engineering

Multi-Agent Systems & Resource Allocation

Team & Task Assignment

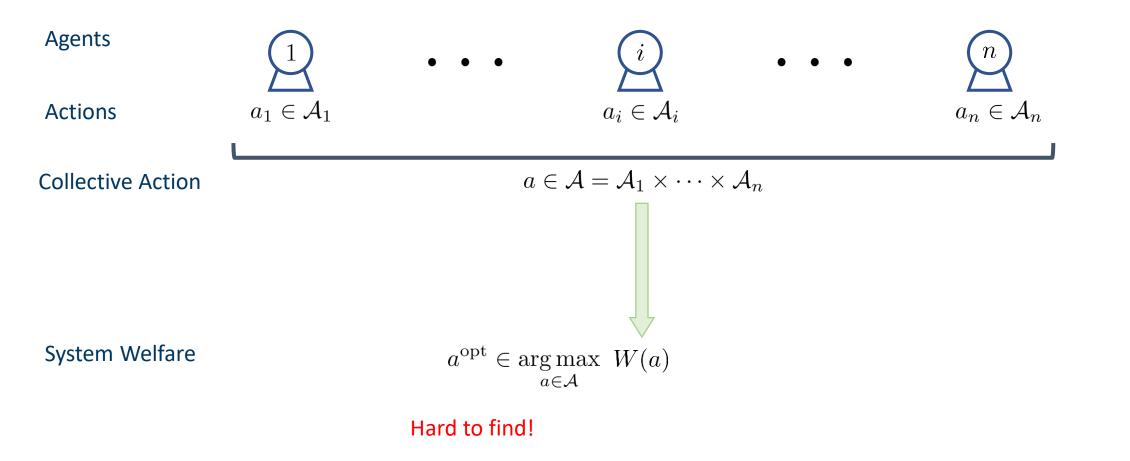


Content Distribution Networks

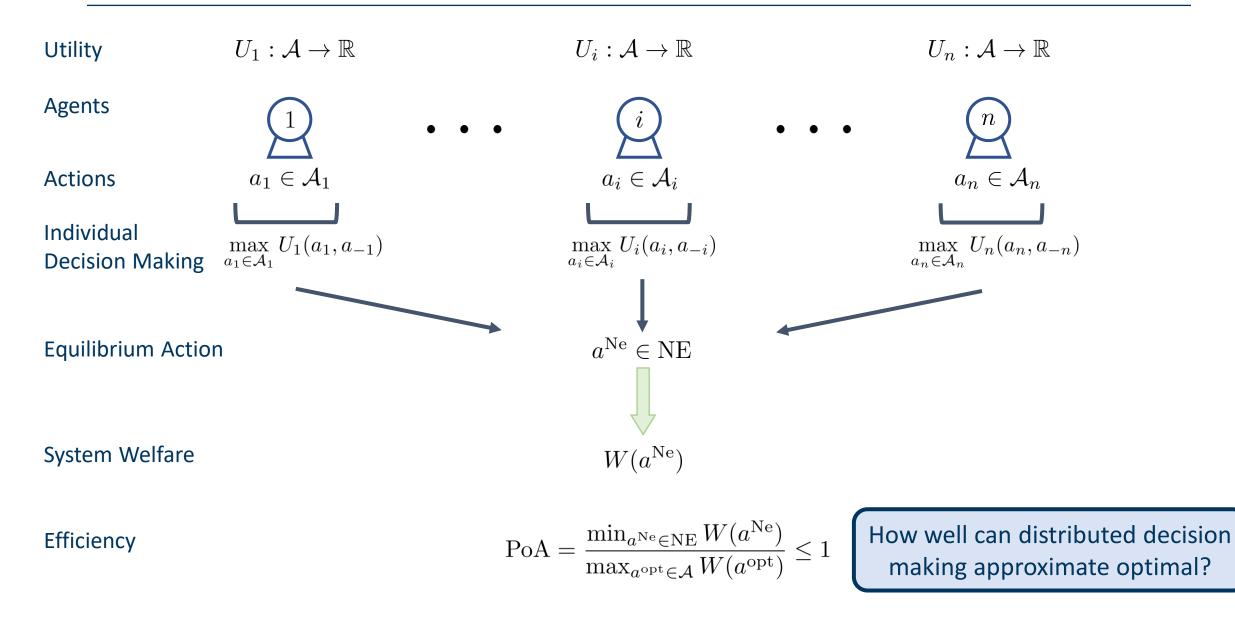
Fleets of Autonomous Robots

Multiple Funding Sources for Projects

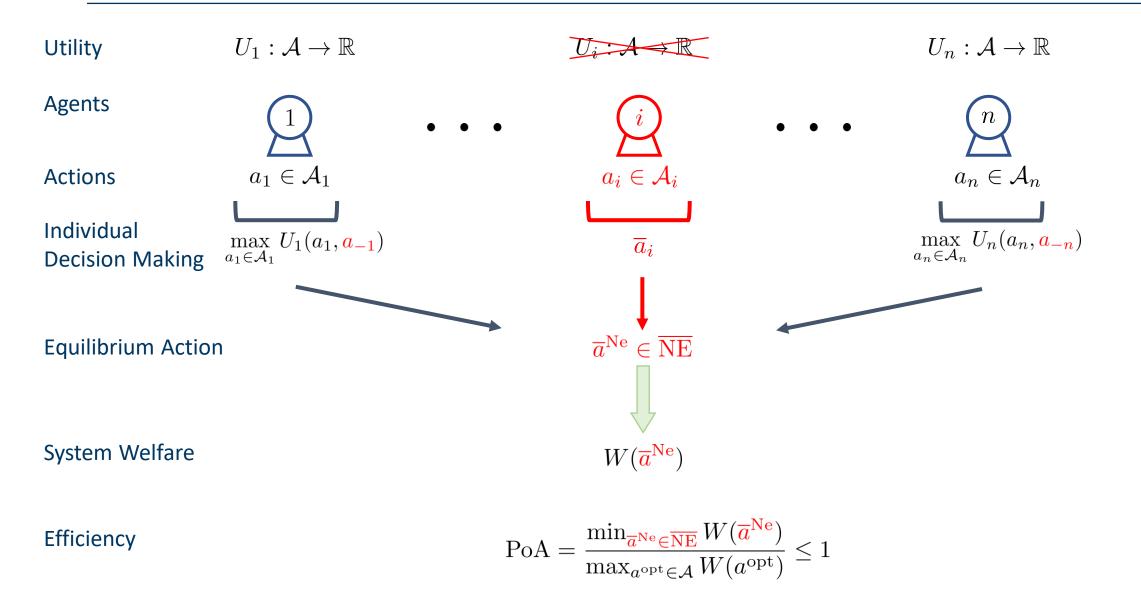
Multi-Agent Systems



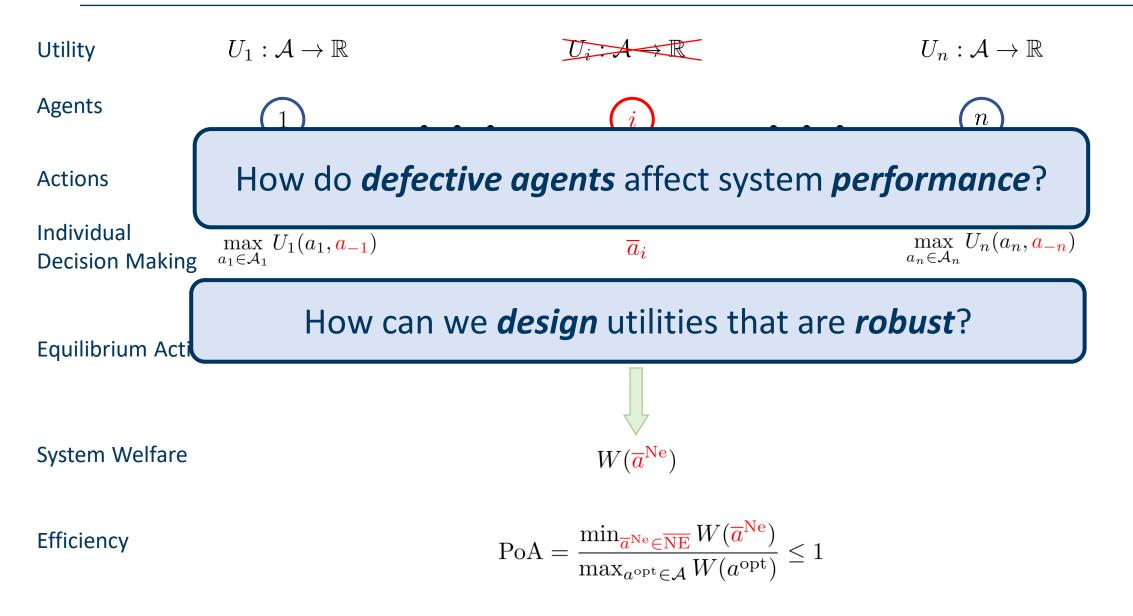
Multi-Agent Systems



Multi-Agent Systems – Defective Agents



Multi-Agent Systems – Defective Agents



Resource Allocation Problems

 $r \in \mathcal{R} = \{1, \dots, R\}$

Resources

Agents

Actions

 $i \in N = \{1, \dots, n\}$ $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$

System Welfare

 $W(a) = \sum w_r(|a|_r)$ $r \in \mathcal{R}$ $U_i(a) = \sum u_r(|a|_r)$ Local Utility Rule

Utility of having $|a|_r$ agents share resource r

Value of having $|a|_r$

agents share resource r

Resource Allocation Problem

 $G = (\mathcal{R}, N, \mathcal{A}, \{w_r, u_r\}_{r \in \mathcal{R}})$

Price of Anarchy

$$\operatorname{PoA}(G) = \frac{\min_{a^{\operatorname{Ne}} \in \operatorname{NE}(G)} W(a^{\operatorname{Ne}})}{\max_{a^{\operatorname{opt}} \in \mathcal{A}} W(a^{\operatorname{opt}})} \le 1$$

 $U_j(a)$ $< \frac{w_{r_1}(1)}{u_{r_1}(1)}$ $w_{r_2}(2)$ $U_i(a)$ (2)W(a)

Resource Allocation Problems

 $r \in \mathcal{R} = \{1, \dots, R\}$

Resources

 $i \in N = \{1, \dots, n\}$

 $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$

Actions

Agents

 $w_r \in \mathcal{W}$

Local Utility Rule

System Welfare

 $u_r = \mathcal{U}(w_r)$

Class of Resource Allocation Problems

$$\mathcal{G}_{\mathcal{W},\mathcal{U}} = \{ G \mid w_r \in \mathcal{W}, u_r = \mathcal{U}(w_r) \; \forall r \in \mathcal{R} \}$$

Price of Anarchy

$$\operatorname{PoA}(\mathcal{G}_{\mathcal{W},\mathcal{U}}) = \inf_{G \in \mathcal{G}_{\mathcal{W},\mathcal{U}}} \operatorname{PoA}(G) \le 1$$

Goal: Design \mathcal{U} to maximize efficiency guarantees

 $U_j(a)$ $w_{r_1}(1)$ $U_i(a)$ (2)W(a)

Stubborn Agents

Regular Agents

$$i \in N = \{1, \dots, n\}$$
 $a \in \mathcal{A} = \mathcal{A}_1 \times \dots \times \mathcal{A}_n$

 $j \in M = \{1, \dots, m\} \qquad d \subset 2^{\mathcal{R}}$

Stubborn Agents

Fixed Action

 $d_j \in 2^{\mathcal{R}}$

System Welfare

Local Utility Rule

 $W(a) = \sum_{r \in \mathcal{R}} w_r(|a|_r)$ Only depends on regular agents $U_i(a;d) = \sum_{r \in a_i} u_r(|a|_r + |d|_r)$ Depends on regular

Perturbed Equilibria NE(G, d)

Robust Efficiency Guarantee

 $\operatorname{PoA}(\mathcal{G}_{\mathcal{W},\mathcal{U}}^m) = \inf_{G \in \mathcal{G}_{\mathcal{W},\mathcal{U}}} \min_{d \subset 2^{\mathcal{R}}: |d| \le m} \operatorname{PoA}(G,d) \le 1$

How should we design *robust utility functions*?

and defective agents

 $U_i(a)$

 $\sum \sum \sum_{u_{r_1}(1)}^{w_{r_1}(0)}$

 $w_{r_2}(1) = u_{r_2}(2)$

W(a)

Proposition 1

Suppose there are at most *m* deflective agents. Let $\mathcal{W} = \{\sum_{t=1}^{T} \alpha_t w_t | \alpha_t \ge 0 \ \forall t \in [T]\}$ be a set of resource value functions. For each $t \in [T]$, let (u_t^*, μ_t^*) be the solution of the following linear program

$$(u_t^{\star}, \mu_t^{\star}) \in \underset{u \in \mathbb{R}^n, \ \mu \in \mathbb{R}}{\arg \max} \mu$$

s.t. $w_t(z+y) - \mu w_t(x+y)$
 $+ xu(x+y+d) - zu(x+y+d+1) \le 0$
 $\forall (x, y, z) \in \mathcal{I}_n, \ d \in \{0, \dots, m\},$

where $\mathcal{I}_n = \{(x, y, z) \in \mathbb{N}^3_{>0} \mid 1 \le x + y + z \le n\}$. The following statements hold true:

- (i) There exists a linear local utility rule \mathcal{U}^* that optimizes the price of anarchy. Furthermore, if $w = \sum_{t=1}^T \alpha_t w_t$, then $\mathcal{U}^*(w) = \sum_{t=1}^T \alpha_t u_t^*$.
- (ii) The optimal price of anarchy satisfies $\operatorname{PoA}(\mathcal{G}^m_{\mathcal{W},\mathcal{U}^*}) = \max_{t \in [T]} 1/\mu_t^*$.

Easy to find Easy to construct Robust Performance Guarantee

Covering Problems

Each resource has a value that is contributed to the welfare when covered by at least one agent

$$W(a) = \sum_{r \in \mathcal{R}} v_r \cdot \mathbb{1}[|a|_r > 0]$$
Theorem [Gairing 2009]
Optimal utility design

$$U_i(a) = \sum_{r \in a_r} v_r \cdot u^0(|a|_r)$$
where

$$u^0(x) = (x - 1)! \frac{\frac{1}{(n-1)(n-1)!} - \sum_{i=1}^{n-1} \frac{1}{i!}}{\frac{1}{(n-1)(n-1)!} - \sum_{i=1}^{n-1} \frac{1}{i!}}$$
with

$$PoA(\mathcal{G}_{1,u^0}) = 1 - \frac{1}{e} \approx 0.632$$

 $\operatorname{PoA}(\mathcal{G}_{1,u^0}^{m=2}) \approx 0.254$

 $\operatorname{PoA}(\mathcal{G}_{1,u^0}^{m=5}) \approx 0.121$

How much can we improve robustness? & What do we sacrifice in the nominal setting? Theorem 2

In the class of covering games, if

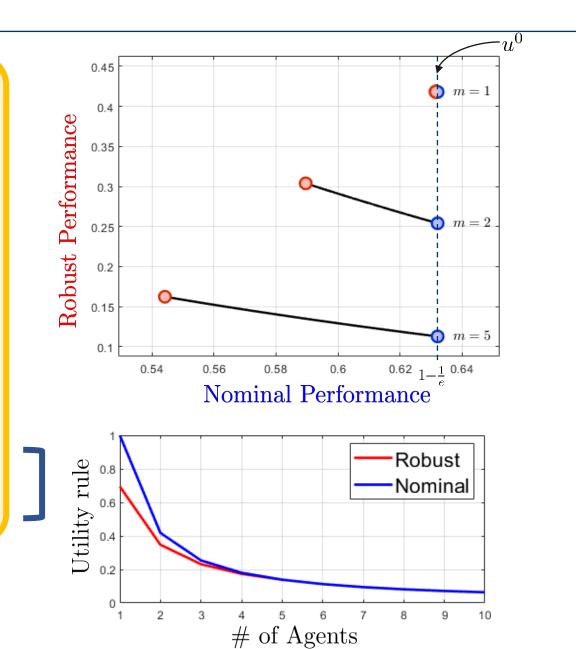
$$\operatorname{PoA}(\mathcal{G}^m_{1,u}) \geq \frac{\Gamma_m + \frac{e}{e-1}}{1 + t\Gamma_m},$$

where $\Gamma_m = m! \frac{e - \sum_{i=0}^{m-1} \frac{1}{i!}}{e-1} - 1$ and $t \in [0, 1]$, then

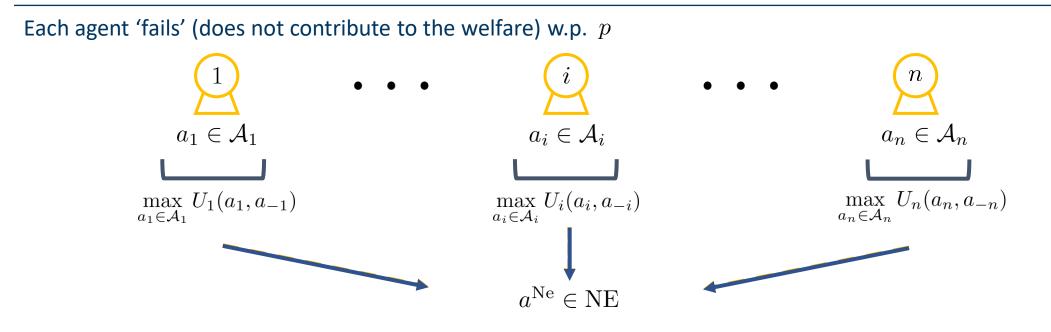
$$\operatorname{PoA}(\mathcal{G}^{0}_{1,u}) \leq \frac{(e-1)(1+t\Gamma_m)}{1+(e-1)(1+t\Gamma_m)}$$

These price of anarchy guarantees can be realized by

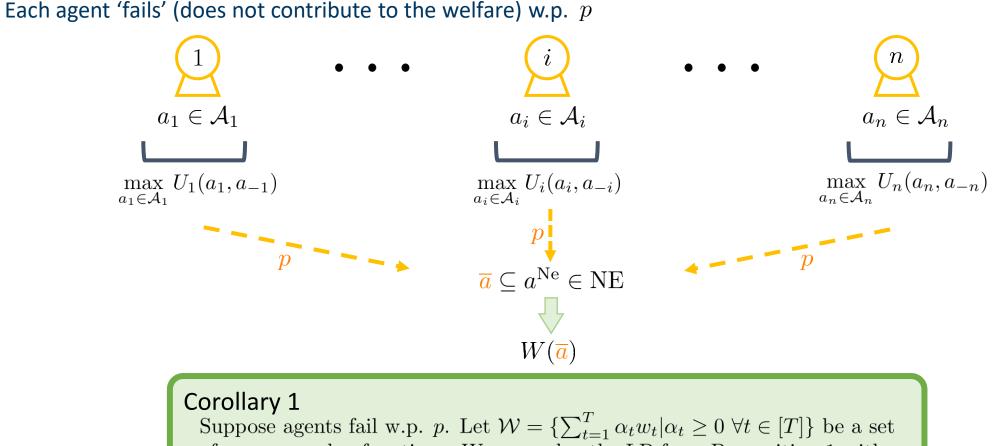
$$u^{t}(x) = u^{0}(x) - \max\left\{t\left(u^{0}(x) - \frac{m}{x}u^{0}(m)\right), 0\right\}.$$



Failure Prone Agents



Failure Prone Agents

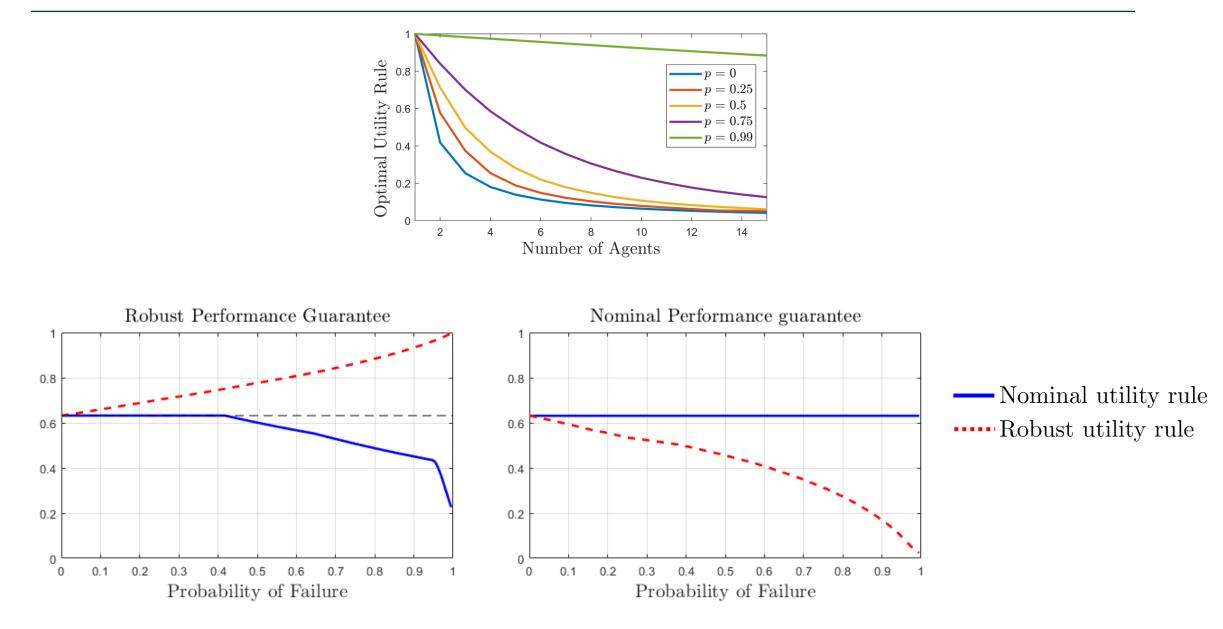


of resource value functions. We can solve the LP from Proposition 1 with

$$\overline{w}^t(x) = \sum_{k=0}^x w^t(k) \binom{x}{k} (1-p)^k p^{x-k} \quad \forall \ t \in [T].$$

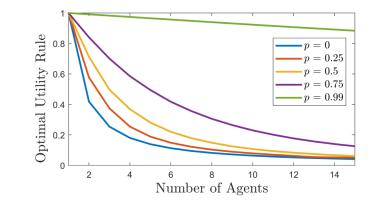
and get an optimal mechanism and price of anarchy guarantee.

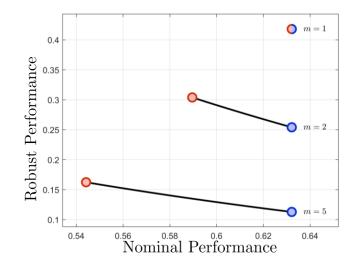
Failure Prone Agents in Covering Problems



 For a more *robust* design, higher utility for more *overlap*

Trade-off between nominal and robust performance guarantees





UC SANTA BARBARA

Robust Utility Design in Distributed Resource Allocation Problems with Defective Agents

Bryce L. Ferguson & Jason R. Marden

University of California, Santa Barbara department of Electrical and Computer Engineering